
Life’s a Party: Analyzing Party Compositions for Combat
Encounters in Dungeons & Dragons Fifth Edition through Monte

Carlo Methods

Michael Hauge and Mason Starr

December 7, 2021

Abstract

Dungeons & Dragons is a tabletop roleplaying game in which a party of adventurers explores and fights
their way through a fantasy world of the players’ creation. There are many different classes that players
can choose to handle difficult turn-based combat encounters, including bulky melee-based characters to
deal damage, more frail spellcasters with arcane abilities, healers, ranged combatants, and more. In this
paper, we present the results of 1.485 million sets of combat encounters for different combinations of
classes within an adventuring party, produced by a Python-based simulation of D&D combat. Overall,
the most successful party was made up of a Cleric (a healer), a Fighter (a bulky melee build), a Paladin
(a bulky healer and damage-dealer), and a Barbarian (the bulkiest class that deals the most damage).
While the simulation is not a perfect representation of how human players approach the game, general
trends for each class with regards to combat are clear. Bulkier classes, with lots of hit points, hold up
better in combat, especially at the level and difficulty simulated; in addition, the total damage a character
can deal is much more important to the success of the party than the damage on a per-round basis.

1 Background and Description of Problem

1.1 The d20 System
In 1974, Gary Gygax and Dave Arneson designed Dungeons & Dragons: a tabletop role-playing game that
would define an entire genre of games for generations to come. In D&D, players engage in collaborative
storytelling by controlling unique characters that slay monsters, go on quests, collect treasure, explore new
frontiers, uncover ancient secrets, and more. While the rules of the game provide structure and balance to
the adventure, the only limit on the game’s content is your imagination.

One player, known as the Dungeon Master (DM), controls the world at large: all the monsters, kings,
peasants, and animals. The DM describes the world to the other players, who each control a unique player
character. These characters together form an adventuring party. In this analysis, we will simulate combat
between an adventuring party and various monsters with Monte Carlo methods, to determine the most
efficient party composition.

Dungeons & Dragons is a d20 system; players primarily roll a 20-sided die (d20) to attempt various
actions such as attacking a monster, picking a lock, casting a spell, etc. [1]. A typical die roll goes as follows:

1. A player wants to do something - e.g., attack a monster.

2. The player rolls a d20 and adds the relevant modifier - e.g., roll 1d20, add attack modifier

3. The result is compared against a difficulty class to determine outcome - e.g., the attack roll total is
greater than the monster’s armor class, so the attack hits.

Our project uses the set of rules for the fifth edition of the game, or ‘5e.’

1

1.2 Rolling Dice
Many values in D&D are expressed in the form ‘ndk +m,’ which means “roll n k-sided dice and add m to
the total.” We can define a discrete random variable R ∼ Unif(1, k), which can take values between 1 and
k each with probability 1/k, as the result of rolling a single die. R has mean µR = (k + 1)/2 and variance
σ2
R = (k2 − 1)/12.

Let R1, . . . , Rn
iid∼ Unif(1, k) be the results of rolling n k-sided dice. If we define

Y =

n∑
i=1

Ri (1)

then the distribution of Y is given by

P (Y = y) =
1

kn

(
n

y

)
k

(2)

where
(
n
y

)
k

are the polynomial coefficients, which can be computed by a number of different recursive relations
[2].

Because the rolls Ri are independent, the sum Y has mean µY = nµR and variance σ2
Y = nσ2

R. Thus, if
we define the random variable

X = Y +m =

n∑
i=1

Ri +m (3)

to be the result of the total expression ‘ndk +m,’ then X has mean µX = µY +m = nµR +m and variance
σ2
X = σ2

Y = nσ2
R. The Python code used to generate these distributions is given in Appendix A.1.

Overall, however, as the number of dice rolled n increases, the distribution of Y converges to Nor(µY , σ
2
Y)

and the distribution of X converges to Nor(µX , σ2
X).

It is possible to generalize this analysis further, to account for an arbitrary number of dice with different
numbers of faces - i.e., ndk +mdj. Individual die rolls, which have uniform probability, can be convolved
with each other to yield the probability distribution for this arbitrary case [3]. The discrete convolution of
two functions f(x) and g(x) is given by:

(f ∗ g)(x) ≡
∑
z

f(z)g(x− z) (4)

Since convolutions are commutative and associative, they can be combined in arbitrarily large sequences
(i.e., {[(f ∗ g) ∗h]...}), allowing for the computation of any desired probability distribution. Therefore, given
a random variable S = ndk +mdj, the probability distribution is given by:

P (S = s ∈ ndk +mdj) =
∑
r

P (r ∈ ndk)P (s− r ∈ mdj) (5)

where P (r ∈ ndk) and P (s − r ∈ mdj) can be computed from further convolutions, the basis of which are
the uniform distributions P (x ∈ dk) = 1/k and P (y ∈ dj) = 1/j. For example, if S = 2d8 + 1d4:

P (S = s) =
∑
r

P (r ∈ 2d8)P (s− r ∈ d4) (6)

P (r ∈ 2d8) =
∑
z

P (z ∈ d8)P (r − z ∈ d8) (7)

∴ P (S = s) =
∑
r

(∑
z

P (z ∈ d8)P (r − z ∈ d8)

)
P (s− r ∈ d4) (8)

2

It is therefore straightforward to compute these probability distributions, although the analytical expres-
sions for these series of convolutions are difficult and tedious to obtain, and thus outside the scope of this
paper.

1.3 Advantage
There are many scenarios in D&D 5e in which the player, or an enemy, is granted ‘advantage’ or ‘disadvan-
tage.’ There are many mechanics that bestow advantage on a player (for example, a player has advantage
on an attack roll when attacking a prone enemy), and the DM may choose to grant a player advantage on a
skill check or saving throw for contextual or roleplay-based reasons.

The mechanic of advantage is simple: the player rolls their d20 twice, and uses the higher roll. Likewise,
for disadvantage, they must use the lower roll. Intuitively, this advantage is undoubtedly good - but how
good?

If we define a random variable R = dNadv as a roll of an N -sided die with advantage, and two additional
random variables R1 and R2 as the individual dice rolls, we can represent the value of R as:

r = max(r1, r2) =

{
r1 if r2 ≤ r1

r2 otherwise
(9)

We can write the probability distribution by doubling the probability that r = r1 and r2 ≤ r1 (since it
does not matter which dice was rolled first), and subtracting off a correction term so we do not count the
case when r = r1 = r2 [4]:

P (R = r ∈ dNadv) = 2P (r1 = r ∈ dN)P (r2 ≤ r1 ∈ dN)− P (r1 = r2 = r ∈ dN) (10)

or, written in functional form [4]:

P (R = r ∈ dNadv) =

{
2r−1
N2 1 ≤ r ≤ N

0 otherwise
(11)

Likewise, the probability distribution for rolling with disadvantage is given by [4]:

P (R = r ∈ dNdisadv) =

{
2(N−r)+1

N2 1 ≤ r ≤ N

0 otherwise
(12)

Figure 1 shows the cumulative distribution functions for rolling a d20 with no modifier, with advantage,
and with disadvantage. Overall, while the expected value of a standard d20 role is 10.5, the expected value
of a d20 roll with advantage is 13.825, while the expected value of a d20 roll with disadvantage is 7.175.
Therefore, on average, having advantage on a roll is about equivalent to a +3 bonus, will disadvantage is
approximately a -3 penalty. In addition, having advantage almost doubles the chance of a critical hit (rolling
a 20, from 5% to 9.75%), and halves the chance of a critical miss (rolling a 1, from 5% to 2.5%).

However, most of the time, the player is rolling a d20 in an attempt to get higher than a certain set
number. If that number is around 10, where the difference between having advantage and the standard roll
is greatest, having advantage is actually more equivalent to a +5 bonus, while if the player is rolling against
a number closer to 1 or 20, the benefit of advantage decreases [5].

1.4 Stats and Modifiers
In Dungeons and Dragons, characters and monsters possess different ability scores, which represent their
strengths and weaknesses in different areas. Consult Table 1 for an overview of each ability score explained
with a tomato.

3

Figure 1: Plot of the cumulative distribution functions of a standard d20 roll, a d20 roll with advantage, and
a d20 roll with disadvantage. (Discrete CDF shown as continuous for illustrative purposes.)

Ability Score Relevant Statistics Description
Strength Melee attack rolls and damage Your ability to crush a tomato
Dexterity Ranged attack rolls, reflex saves, armor class Your ability to dodge a tomato
Constitution Hit points, fortitude saves Your ability to eat a rotten tomato
Intelligence Spellcasting (Wizard) Your ability to know that a tomato is actually a

fruit
Wisdom Spellcasting (Cleric, Druid), will saves Your ability to know that a tomato does not be-

long in a fruit salad
Charisma Spellcasting (Warlock, Sorcerer) Your ability to sell someone a tomato-based fruit

salad

Table 1: Ability scores explained with tomatoes [6].

Ability scores, in conjunction with a character’s class, define a unique set of statistics and modifiers. For
the purposes of this analysis, the most important statistics are attack modifiers, damage modifiers, armor
class (or AC, which determines how hard a character is to hit), hit points, and saving throws.

Modifiers are flat bonuses added to a given die roll. For example, if a character has a +5 attack modifier,
they roll a 1d20 and add 5 before comparing to their target’s armor class. In this sense, modifiers essentially
shift the distribution of given die roll, changing the mean accordingly.

1.5 Party Composition
In this analysis, we will be evaluating parties composed of combinations of the 12 core classes: Barbarian,
Bard, Cleric, Druid, Fighter, Monk, Paladin, Ranger, Rogue, Sorcerer, Warlock, and Wizard. When choosing
4 party members from 12 options without replacement, the number of possible party combinations is given
by: (

12

4

)
=

12!

(4!)(8!)
= 495

So, we have 495 possible party compositions to evaluate. Traditional wisdom dictates that a balanced

4

party should have a spell caster, a beefy melee fighter, a healer, and a ranged combatant. The “default”
adventuring party is a Fighter, a Cleric, a Rogue, and a Wizard. Will this traditional wisdom hold? Let’s
find out.

1.6 Class Descriptions
Each player character has a unique class that grants them special abilities. Some classes can cast spells,
some are experts with weapons, and some are skilled in other ways. For this simulation, we are using official
level three character sheets, download from the Wizards of the Coast website [7]. Base statistics for each
character are given in Table 2.

Class Max HP AC Attack Modifiers Attack Damage
Barbarian 32 14 +5 2d6+3
Bard 24 15 +5 1d8+3
Cleric 27 18 +4 1d8+2
Druid 25 15 +4 1d6+3
Fighter 28 18 +5 1d10+3
Monk 15 15 +5 1d6+4
Paladin 28 16 +5 2d6+3
Ranger 25 15 +7 2d8+3
Rogue 18 15 +5 1d6+3
Sorcerer 23 14 +4 1d4+1
Warlock 24 14 +5 1d10+3
Wizard 17 13 +5 1d10

Table 2: Base statistics for each class. Attack modifiers and damage are listed for only the base attack
of each class. It does not account for damage from other sources, such as sneak attack, high level spells,
barbarian rage, etc.

Barbarians live for the thrill of combat. They are able to fly into a battle rage, which grants them
additional attacks and bonus damage. They also have the ability to be reckless; doing so gives them advantage
on all attacks for a round, but gives enemies advantage when attacking the barbarian until their next turn.
It’s a dangerous tactic, but barbarian have the hit points to justify such a strategy. The barbarian uses their
greatsword to attack the most powerful enemy in the room.

Bards are masters of music, and can use magically enhanced tunes to buff their allies. The bard can give
their allies “inspiration dice,” which can be rolled to add a bonus 1d6 onto any roll. Unfortunately, the bard
can only use this ability three times a day, so deciding when to use an inspiration dice is key. Unfortunately,
the combat algorithm is not too smart in deciding when to use this ability to maximum effect. Bards also
have the soothing words ability, which allows their allies to recover additional health during short rests.

Clerics are devout worshipper of powerful deities, who grant them the ability to cast spells and heal
their allies. Clerics are the best healers, and have the ability to restore hit points to their allies in a pinch.
The cleric can also cast spiritual weapon against stronger opponents, summoning a magical hammer that
pounds them into submission.

Druids are one with nature. They are able to heal their allies with natural magic, though not as well
as the cleric. The druid attacks enemies with dual scimitars, potentially landing two hits in a turn. Against
powerful enemies, the druid casts flame blade, increasing the damage of their scimitars.

Fighters are highly trained combatants that dominate the battlefield. The fighter attacks the strongest
enemy in sight with their sword, doing a respectable amount of damage on a hit. In addition, the fighter can
use their bodyguard ability to protect a nearby ally each turn, granting them advantage against all incoming
attacks.

Monks are skilled hand-to-hand combatants, using martial arts and ki abilities to best their opponents.
Our monk is a halfling, a short fellow who uses the size of opponents against them. The monk can use flurry

5

of blows three times per combat to get two extra attacks, potentially tripping the target to grant all allies
advantage against the downed enemy. As a halfling, the monk also is lucky, which allows them to reroll
natural 1s on attack rolls.

Paladins are holy warriors that strive to defeat the enemies of their gods. They have a small number
of spells that they can use to lay on hands or smite. Lay on hands can be used to heal allies, and smite is
used to get a substantial bonus to damage as divine wrath is invoked against the enemy.

Rangers are hunters that stalk the wilderness, often feeling more at home in a tent than in an inn.
Our ranger is a talented archer who uses their colossus feller ability to almost double their damage output.
Notably, the ranger has the highest attack modifier of any class. The ranger also chooses to attack the
weakest enemy in a battle, to pick off minions before attacking a stronger opponent.

Rogues are sneaky tricksters who rely on their skills to make it out of sticky situations. Our rogue
attacks with a shortsword and a dagger, and has the potential to land two attacks in one turn. The rogue
also uses their sneak attack ability to do extra damage if they have advantage on the enemy. For this
simulation, we assume that the rogue has advantage 50% of the time.

Sorcerers are born with magic coursing through their veins. Our sorcerer in particular gets their power
through a connection to a frost dragon. They can use frost breath to attack multiple enemies at once, cast
blur to grant allies advantage against all attacks, and cast magic missile for guaranteed damage. If all else
fails, they can cast their trusty ray of frost.

Warlocks are granted their magic from a mysterious and powerful patron. They can cast scorching ray
on powerful opponents to do a ton of damage, but spend most of their time casting eldritch blast, which
does about as much damage as a fighter’s sword.

Wizards learn magic through years of studying and practice. Our wizard is a pyromancer; they can cast
flaming sphere to roll around the battlefield and do damage to enemies each turn, or cast burning hands to
toast multiple enemies at once. Mostly, they cast fire bolt. Though powerful spellcasters, wizards are very
frail and do not have a lot of hit points.

1.7 Monsters
D&D 5e classifies monsters by challenge rating (CR), or in general the difficulty a party will have when
facing a particular creature. Ten total monsters were implemented, at the following CRs: 1/2 (Orc, Giant
Wasp), 1 (Hippogriff, Specter), 2 (Quaggoth), 3 (Displacer Beast, Hell Hound), 4 (Shadow Demon, Lizard
King), and 5 (Troll). All statistics and other information about D&D monsters were taken from the official
Monster Manual [8].

An interesting note about monsters in D&D 5e is that their maximum HP is given as the result of a roll
of the form ndk +m, like those discussed in section 1.2. Figure 2 shows the distributions for the maximum
HP of each of the programmed monsters, illustrating how, if n is sufficiently high, these discrete distributions
begin to look like normal distributions.

As an aside, it is possible to investigate these monsters further to quantify their difficulty beyond a simple
CR, and to investigate the game’s balance. Figure 3 shows the damage that each monster deals on a hit,
plotted against the monster’s maximum HP. The data are plotted as ellipses, with their centers aligned with
the means of each variable and their major and minor axes given by three times the standard deviation in
each direction.

Overall, there is a high positive correlation between a monster’s damage dealt on a hit and its maximum
HP (0.7572). This indicates that, as monsters get more difficult, their damage output scales with their
health pool. In addition, the different CR groupings of the monsters are visible, but they do not match
up perfectly with what might be expected. For example, the Shadow Demon does not seem to deserve its
designation as CR 4, having a lower damage output and maximum HP than the Displacer Beast, which is
CR 3. However, the Shadow Demon has additional mechanics and abilities (for example, invisibility) that
are not easily represented in this simplified plot.

6

Figure 2: Maximum HP distributions for selected monsters.

Figure 3: Maximum HP and average damage on hit distributions for selected monsters. The ellipses shown
have major/minor axes equal to ±3σ.

7

2 Implementation
All 2,000+ lines of our code for implementation of classes, monsters, dungeons, and combat, as well as for
additional analysis and data processing, can be found at the following GitLab link: https://gitlab.com/
dillan1/dnd_5e_party_evaluator/ [9].

2.1 Classes (the Programming Kind)
We elected to program our simulation in Python, to take advantage of statistics-based Python libraries
and make use of Python’s simple object-oriented programming. A basic Unified Modeling Language class
diagram is shown in Figure 4

Figure 4: Unified Modeling Language class diagram showing the relationships between Characters, Monsters,
and Actors.

All creatures, both Characters and Monsters, are Actors. They have statistics such as strength, dexterity,
armor class, and more. They also have functions to handle rolling initiative, healing, attacking, taking
damage, deciding what to do on their turn, etc. Both Characters and Monsters have coded strategies to
determine their enemies, but only Characters have the ability to short rest outside of combat.

8

https://gitlab.com/dillan1/dnd_5e_party_evaluator/
https://gitlab.com/dillan1/dnd_5e_party_evaluator/

2.2 Combat Encounters
In this analysis, we simulate a series of combat encounters between an adventuring party and monsters.
To begin a combat, all Actors roll initiative by rolling a 1d20 and adding their dexterity modifier. This
determines the turn order of the combatants: highest initiative takes their turn first, followed by second
highest, and so on.

On their turn, an actor follows a programmed pattern of behaviour. Although the exact implementation
varies from actor to actor (see section 2.1), most actors pick an enemy to attack, then attempt to attack
them. Some Actors have more advanced logic, such as Sorcerers only using their powerful spells on high CR
opponents. If an attack hits (usually by an attack roll meeting or exceeding a target’s armor class), damage
is dealt and the target’s hit points are reduced. If an actor reaches 0 hit points, they are assumed to be dead.
Each actor takes their turn in initiative order, repeating until either all monsters are dead or the whole party
is dead, at which point the combat ends. A sample of the verbose output of a combat simulation is shown
below.

Roll for initiative! Turn order: Orc 2, Orc 3, Fighter, Orc 1, Wizard, Rogue, Cleric
Orc 2 attacks Wizard and deals 9 damage
Orc 3 attacks Wizard and deals 7 damage
Fighter protects Rogue
Fighter attacks Orc 3 with a big sword and deals 12 damage
Orc 1 attacks Rogue and deals 8 damage
Wizard attacks Orc 2 with burning hands and deals 10 damage
Wizard attacks Orc 3 with burning hands and deals 11 damage
Orc 3 is slain!
Wizard attacks Orc 1 with burning hands and deals 12 damage
Rogue attacks Orc 1 with shortsword and misses
Rogue attacks Orc 1 with dagger and deals 2 damage
Orc 1 is slain!
Cleric heals Wizard
Wizard heals 15 hit points
Orc 2 attacks Rogue and deals 13 damage
Rogue is slain!
Fighter protects Wizard
Fighter attacks Orc 2 with a big sword and misses
Wizard attacks Orc 2 with fire bolt and misses
Cleric attacks Orc 2 with hammer and misses
Orc 2 attacks Wizard and misses
Fighter protects Wizard
Fighter attacks Orc 2 with a big sword and deals 13 damage
Orc 2 is slain!
Combat is over!
Fighter takes a short rest
Wizard takes a short rest
Cleric takes a short rest

This model of combat is vastly simplified compared to actual combat in Dungeons and Dragons. When
playing the game for real, there are many factors that affect combat: perhaps enemies are out of reach,
dangerous hazards threaten the battlefield, or a time sensitive objective drives the players to change their
combat strategy. There are hundreds of possible options for a given actor on their turn. In our simulation,
things are simplified: any actor can be attacked at any time, and factors such as movement and objective are
not considered. Despite these limitations, our simulation gives an accurate representation of general trends
for each character class.

9

2.3 Dungeons and Rests
To simulate a variety of combat encounters, we ran each party through a series of simulated dungeons. Each
dungeon contained multiple rooms, with each room containing some monsters for the party to fight. The
party enters a room and fights the monsters inside. If the party fails, the dungeon run is over. We record
statistics for each party member: damage dealt, turns alive, damage per round (DPR), etc. If the party
is victorious, they take a short rest before moving on the next room, as shown in Figure 5. If the party
successfully clears every room in the dungeon, statistics are recorded and the run end.

Short rests provide an opportunity for party members to heal. While taking a short rest, a character
has the option to spend one or two of their three "hit dice" to recover some hit points. In this simulation,
characters will spend one hit die if they are below 50% hit points, and will spend two hit dice if they are
below 25% hit points. Some classes, such as the Bard, have abilities that effect short rests.

Figure 5: Flowchart depicting how a party progresses through a dungeon with N rooms.

We elected to run parties through three separate dungeons, detailed in Figure 6. Each dungeon has three
rooms filled with a variety of monsters. These dungeons are quite challenging and most parties will fall prey
to the beasts within. However, some parties will be able to clear the dungeon if they are effective enough
and have luck on their side.

2.4 Monte Carlo Simulation
A Monte Carlo algorithm employs repeated use of random sampling to obtain numerical results. In our case,
we are sampling die rolls and modeling the results using the rules of D&D. While one dungeon run is enough
to obtain some base statistics, we need more samples.

To assess the 495 different party combinations, the parties were sent through the dungeons described
above 1000 times each, for a total of 1.485 million dungeon simulations. For each character class in each
simulation, the total damage dealt, total damage taken, number of rounds lived, and the room in which they
died (if any) was recorded, as well as the overall success or failure of the party to beat the dungeon. This
data was then unpacked and analyzed by party composition, individual class, and pairings of classes.

10

Figure 6: Dungeons and contents

3 Main Findings

3.1 Party Composition Analysis
Table 3 shows the average, standard deviation, minimum, and maximum success rates for each of the three
dungeons, as well as the parties that achieved the minimum and maximum success rates.

Dungeon Mean Success Rate Std. Dev Minimum Maximum
1 0.082 0.070 0.001 (Wizard/Druid/Sorcerer/Monk) 0.305 (Fighter/Bard/Ranger/Barbarian)
2 0.114 0.062 0.010 (Cleric/Druid/Sorcerer/Monk) 0.338 (Cleric/Fighter/Ranger/Barbarian)
3 0.039 0.036 0.000 (Wizard/Druid/Sorcerer/Monk) 0.240 (Cleric/Fighter/Paladin/Barbarian)

All 0.078 0.047 0.013 (Cleric/Druid/Sorcerer/Monk) 0.279 (Cleric/Fighter/Paladin/Barbarian)

Table 3: Overall success rates for the three simulated dungeons.

There is clearly synergy between the Cleric, Fighter, and Barbarian, which is in line with the player’s
intuition: a healer, paired with two bulky party members that deal massive damage, is a recipe for success.
On the other hand, when the Druid, Sorcerer, and Monk, all relatively frail classes, are grouped together,
they do not do well at all. Spellcasters like the Wizard, Sorcerer, and Warlock, and ranged attackers like
the Ranger, are at a disadvantage in the simulation, which does not account for the fact that they would
mostly hang around the edges of the battlefield, away from the fray.

From Figure 7, which plots the distributions of the success rates, it is possible to see that, while the rate
for Dungeon 1 exhibits a somewhat bimodal distribution, the distributions for Dungeon 2 and Dungeon 3
look more like negative binomial distributions, with tails stretching out to the right.

Table 4 shows the frequency of each class appearing in the top ten and bottom ten parties in terms of
overall success rate.

From the table, a few trends are clear. For one, having a Barbarian and a Fighter, two bulky, physical,
damage-dealing classes, is essential for having a top-performing party. On the other hand, the pairing of
Druid and Sorcerer, two relatively frail caster classes that rely on magic and do not have good defense, is
certain to doom the party. Another point of note is the Cleric, which appears with significant frequency in
both the top ten and bottom ten. The Cleric is at its best when it is not necessarily being relied upon to
do damage, but is instead using its healing abilities to support other classes that do significant damage (for

11

Figure 7: Layout for dungeons 1 through 4.

Class Top 10 Bottom 10
Barbarian 1.0 0.0

Bard 0.3 0.4
Druid 0.2 1.0
Monk 0.0 0.4
Ranger 0.4 0.0
Warlock 0.0 0.3
Paladin 0.3 0.0
Sorcerer 0.0 1.0
Cleric 0.6 0.4
Fighter 1.0 0.0
Rogue 0.1 0.4
Wizard 0.1 0.1

Table 4: Frequency of each class appearing in the top ten or bottom ten performing parties.

12

example, when grouped with a Fighter, Paladin, and Barbarian). On the other hand, when grouped with
frailer classes (for example, a Druid, Sorcerer, and Monk), the Cleric does not provide much help to the
party, since it cannot deal the necessary damage and it cannot heal its fellow party members fast enough.

3.2 Damage per Round
As illustrated in Figure 8, there is a negative correlation between a class’s damage per round (that is, the
average damage the class inflicts on an enemy during each round of combat) and that class’s maximum hit
points. This makes sense, from a game balance perspective; classes that are able to do more damage are
balanced out by being more frail, encouraging players to be careful with this high-risk, high-reward play
style. The notable exception, found in the upper right corner of the plot, is the Barbarian. The Barbarian
is a rather unbalanced class at the level considered in this paper, and its status as an outlier is a frequent
theme of the findings.

Figure 8: Correlation between each class’s damage per round and maximum hit points. Black lines are
plotted at the mean of each variable.

The overall correlation between class damage per round (DPR) and maximum hit points (HP) is −0.3336;
if the outlier of the Barbarian is not considered, it is significantly larger in magnitude, at −0.7812.

3.3 Individual Class Performance
For a more detailed look at how each individual class contributes to party success, it is necessary to break
the data down by class. Figure 9 shows the overall success and survival rates for each class, as well as the
ratio of these rates. This ratio is, in a way, a measure of how important each class is to the success of
parties containing that class. For example, the Barbarian and Cleric have the highest ratio of survival rate
to success rate; for each of them, they survive to the end of about 4/5 dungeons they beat, indicating that
they play very important roles in the success of their parties. On the other hand, the Wizard survives to the
end of only around 50% of the dungeons its parties beat.

Out of the classes with the top five survival rate to success rate ratios, four deal heavy damage (Barbarian,
Ranger, Paladin, and Fighter), three are bulky (Barbarian, Paladin, and Fighter), and two are effective
healers (Paladin and Cleric), information which can be used to inform party composition.

13

Figure 9: Data on overall success rate, survival rate, and ratio of survival rate to success rate, broken down
by class.

14

Delving deeper into the specific data recorded during each simulation (damage dealt, damage taken, and
rounds survived), it is possible to gain more insight. (Tables summarizing the mean and standard deviation
of each of these metrics, as well as damage per round, may be found in Appendix B.)

From an overall perspective, the Barbarian deals the most damage, and takes the most damage, out of
all the classes, by a significant margin. This makes it incredible useful for a party, both by dealing damage
to enemies and taking hits from enemies that otherwise its fellow party members would take. The Barbarian
also has a consistently high damage per round (DPR), although surprisingly the Monk and Wizard also have
high DPRs. This may be, counter-intuitively, due to the fact that the Monk and Wizard do not tend to
survive for very long; additionally, both of these classes have the capacity for high damage output (the Monk
through its Flurry of Blows ability, and the Wizard through its higher-level spell slots). The Cleric dealt the
least damage overall, but it provides different benefits to the party through healing.

The distributions of total damage dealt and DPR are plotted in Figure 10. With their consistent round-
to-round damage output, not dependent on abilities or spells, the Barbarian, Ranger, Fighter, and Paladin
show total damage dealt distributions that look close to Gaussian (see Figure 10a). The other distributions
tend to be skewed right, indicating that sometimes an ability or spell allows that class to deal significantly
more than their average damage (for example, doing double damage on a critical hit), except that of the
Sorcerer, which is skewed left. The Wizard is another exception - its damage dealt distribution looks like the
sum of three right-skewed distributions, which may be conjectured to correspond to simulations, from left to
right, in which the Wizard is: killed before using any spell slots, killed after using only first-level spell slots,
and able to use its second-level spell slots. Figure 10b tells broadly the same story, again with the Wizard
having a higher variance of DPR, since DPR depends heavily on what spells the Wizard is able to cast.

(a) Total damage dealt distributions. (b) DPR distributions.

Figure 10: Class-specific damage data distributions.

The data on rounds alive is less useful, since it is very different for each of the three dungeons, which
vary in difficulty. However, Figure 11 shows a representative example of what the rounds alive distribution
looks like for a given class in a given dungeon (in this case, the Wizard in Dungeon 1). The distribution
looks very much like a negative binomial distribution, which makes intuitive sense: in each round, there is
a certain probability (i.e., p) that a character takes damage, and the character dies after taking damage a
certain number of times (i.e., r), corresponding to something like a NegBin(r, p) distribution.

It is also possible to examine the correlations between class-specific statistics and the overall success rates
of parties containing that class, as shown in Figure 12. (On each plot, the mean value of each variable is
plotted as a black line.)

Unsurprisingly, there is a high positive correlation between overall success rate and maximum HP. At a
low level, hit points are a valuable resource, and the bulkiest class (Barbarian) has more than twice as many
as the frailest (Wizard). However, it is interesting to note that there is no significant correlation between

15

Figure 11: Representative rounds alive distribution: Wizard, Dungeon 1.

(a) Correlation between success rate and maximum HP. (b) Correlation between success rate and DPR.

(c) Correlation between success rate and total damage dealt.

Figure 12: Correlations between overall success rates and class statistics.

16

success rate and DPR. Even dismissing the outliers (the Wizard in the upper left and the Barbarian in the
upper right), there is no real trend. Figure 12c provides the answer to this conundrum. Rather than DPR,
it is total damage dealt that has a positive correlation with success rate. Essentially, it is more important
to stay alive and continue doing consistent damage than to do greater damage per round but be more likely
to die.

4 Conclusions

4.1 Party Composition and Gameplay Balance
Though certain classes outperformed others in our simulations, we cannot draw the conclusion that some
classes are definitively better than others. The character classes we modeled are unique characters; for
example the Druid we modeled cannot be representative of every possible Druid in the game.

Additionally, Our simulation does not properly capture the complexity that Dungeons and Dragons
offers, and thus cannot account for strategies that would increase or decrease a character’s success rate. For
example, we found that characters with low hit points tend to fail more than those with high hit points. Our
model assumes that any actor can attack another actor at any time; a property that favors melee combatants
and penalizes ranged combatants such as Wizards that in practice would be keeping their distance to take
less damage when in combat with melee-based enemies. However, having a party with high hit points is very
valuable at low level, as it makes a party more resilient.

When extrapolating results from this paper to an actual game of D&D, it is important to remember
that combat is not the only thing that matters. There are countless obstacles that cannot be solved by
a barbarian swinging a sword. Rogues can pick locks to bypass doors, druids can calm a wild animal by
speaking directly to it, rangers can track their quarry for miles, and wizards can cast any number of useful
spells. When creating a D&D character, maximizing DPR should not be the main concern.

4.2 Future Work
The current simulation architecture is able to model encounters between any number of combatants and any
party size. Future work could include analyzing parties of different sizes, or even modeling an all out war
between hundreds of fighters and hundreds of monsters!

More content could be added to the simulation. There are hundreds of monsters, dozens of character
options, and mechanics like traps and legendary actions that could be implemented with more time.

Dungeons & Dragons is an immensely complicated game, filled with constant decision making: something
that humans are good at, computers less so. With more time and resources, we could improve the AI of
monsters, introduce more game mechanics such as feinting or death saves, and more. One of the biggest but
most complicated improvements we could make is introducing grid-based combat, a key element of combat
in D&D. Doing so would allow for the actor AI to execute more complicated strategies: rogues could flank to
trigger sneak attack, wizard could keep back to stay safer in combat, and paladins could interpose themselves
between their allies and the enemy. However, implementing these changes is incredibly complicated, and
at that point we would basically be developing a video game with a grid display, pathfinding algorithms,
advanced actor AI, etc. - all things that are out of the scope of this paper.

Finally, future work could include using different metrics to model party success. For example, the party
could be run through a dungeon of infinite rooms, with their success based on how far they progress before
perishing.

17

References
[1] Mike Mearls and Jeremy Crawford. Dungeons & Dragons Player’s Handbook. Wizards of the Coast,

Renton, WA, 2014.

[2] Camila Caiado and Pushpa Rathie. Polynomial coefficients and distribution of the sum of discrete
uniform variables. January 2007. Available at https://www.researchgate.net/publication/228457326_
Polynomial_coefficients_and_distribution_of_the_sum_of_discrete_uniform_variables. Accessed
2021-11-09.

[3] Justin Willmert. Basic D&D Statistics: Sums of Dice Rolls. https://justinwillmert.com/articles/2020/
basic-dd-statistics-sums-of-dice-rolls/, 2020. Accessed 2021-12-01.

[4] Justin Willmert. Basic D&D Statistics: Dice Rolling with Advantage. https://justinwillmert.com/
articles/2020/basic-dd-statistics-dice-rolling-with-advantage/, 2020. Accessed 2021-12-01.

[5] Zero Hit Points. Advantage in D&D 5. http://zerohitpoints.com/Articles/Advantage-in-DnD-5. Accessed
2021-12-01.

[6] u/tan620. D&D Stats Explained with Tomatoes. https://www.reddit.com/r/DnD/comments/1s9l2g/
dd_stats_explained_with_tomatoes/. Accessed 2021-12-07.

[7] Wizards of the Coast. Official Character Sheets. https://dnd.wizards.com/charactersheets. Accessed
2021-12-01.

[8] Wizards RPG Team. Dungeons & Dragons Monster Manual. Wizards of the Coast, Renton, WA, 2014.

[9] Mason Starr, Michael Hauge, and Dillan McDonald. DND_5E_Party_Evaluator. https://gitlab.com/
dillan1/dnd_5e_party_evaluator/, 2021.

18

https://www.researchgate.net/publication/228457326_Polynomial_coefficients_and_distribution_of_the_sum_of_discrete_uniform_variables
https://www.researchgate.net/publication/228457326_Polynomial_coefficients_and_distribution_of_the_sum_of_discrete_uniform_variables
https://justinwillmert.com/articles/2020/basic-dd-statistics-sums-of-dice-rolls/
https://justinwillmert.com/articles/2020/basic-dd-statistics-sums-of-dice-rolls/
https://justinwillmert.com/articles/2020/basic-dd-statistics-dice-rolling-with-advantage/
https://justinwillmert.com/articles/2020/basic-dd-statistics-dice-rolling-with-advantage/
http://zerohitpoints.com/Articles/Advantage-in-DnD-5
https://www.reddit.com/r/DnD/comments/1s9l2g/dd_stats_explained_with_tomatoes/
https://www.reddit.com/r/DnD/comments/1s9l2g/dd_stats_explained_with_tomatoes/
https://dnd.wizards.com/charactersheets
https://gitlab.com/dillan1/dnd_5e_party_evaluator/
https://gitlab.com/dillan1/dnd_5e_party_evaluator/

A Code

A.1 Rolling dice in the form ‘ndk +m’

from itertools import product
from collections import defaultdict

PMF of a sum of n discrete RV’s distributed Unif(a,b)
Derived from https :// stackoverflow.com/questions/69791287/how -to -get -the -probability -of-

each -possible -outcome -for -a-multinomial -case
def discrete_uniform_sum_pmf(a,b,n):

du_pmf = {i: 1/(b-a+1) for i in range(a,b+1)}
du_sum_pmf = {0: 1}

for i in range(n):
new_sum_pmf = defaultdict(float)
for prev_sum , dice in product(du_sum_pmf ,du_pmf):

new_sum_pmf[prev_sum + dice] += du_sum_pmf[prev_sum]*du_pmf[dice]
du_sum_pmf = new_sum_pmf

return list(du_sum_pmf.items ())

PMF of a roll of XdY+Z
def roll_dist(X,Y,Z):

pmf = discrete_uniform_sum_pmf(1,Y,X)
rolls = []
for pair in pmf:

ls = list(pair)
ls[0] += Z
rolls.append(ls)

return rolls

A.2 Rolling a d20 with advantage

import numpy as np

PMF of a roll of an N-sided die with advantage
def adv_pmf(r,N):

return (2*r-1)/(N*N)

PMF of a roll of an N-sided die with disadvantage
def dis_pmf(r,N):

return (2*(N-r)+1)/(N*N)

pmf_a = np.zeros(20)
cdf_a = np.zeros(20)
pmf_d = np.zeros(20)
cdf_d = np.zeros(20)
cdf_reg = np.zeros(20)

Compute CDFs
for i in range(1,21):

pmf_a[i-1] = adv_pmf(i,20)
cdf_a[i-1] = sum(pmf_a[:i])
pmf_d[i-1] = dis_pmf(i,20)
cdf_d[i-1] = sum(pmf_d[:i])
cdf_reg[i-1] = 0.05*i

19

B Summary of Class-Specific Data

Class Damage
Dealt (Avg.)

Damage
Dealt (Std.

Dev.)

Damage
Taken (Avg.)

Damage
Taken (Std.

Dev.)

Rounds
Survived
(Avg.)

Rounds
Survived

(Std. Dev.)
DPR (Avg.) DPR (Std.

Dev.)

Barbarian 80.275 38.443 43.693 14.391 7.645 2.664 10.404 3.758
Bard 36.991 19.844 40.048 13.095 7.898 3.406 4.695 1.820
Druid 38.792 23.688 41.156 12.815 7.694 3.295 5.043 2.433
Monk 52.694 34.204 25.913 9.527 5.615 3.191 9.221 4.792
Ranger 63.387 31.016 40.163 12.426 7.933 3.211 7.954 2.665
Warlock 47.241 30.635 38.273 11.606 6.908 2.971 6.781 3.814
Paladin 50.931 27.450 38.869 11.468 7.901 3.107 6.509 2.881
Sorcerer 55.938 23.873 36.646 10.865 7.118 3.219 8.103 2.657
Cleric 32.815 22.165 39.496 12.899 9.328 3.786 3.422 1.636
Fighter 42.545 21.436 42.974 12.367 9.514 3.396 4.473 1.765
Rogue 50.930 29.795 30.934 10.520 6.529 3.314 7.665 3.027
Wizard 56.871 25.199 26.847 8.943 5.217 2.875 13.215 8.142

Table 5: Summary of class-specific data for Dungeon 1.

Class Damage
Dealt (Avg.)

Damage
Dealt (Std.

Dev.)

Damage
Taken (Avg.)

Damage
Taken (Std.

Dev.)

Rounds
Survived
(Avg.)

Rounds
Survived

(Std. Dev.)
DPR (Avg.) DPR (Std.

Dev.)

Barbarian 78.510 24.016 45.338 12.452 9.067 2.358 8.794 2.221
Bard 43.594 19.051 37.502 11.778 9.007 3.076 4.853 1.637
Druid 51.506 21.460 38.876 11.832 8.947 2.946 5.864 2.114
Monk 66.300 33.713 24.055 8.625 6.799 2.979 9.697 4.099
Ranger 71.683 28.117 36.569 10.940 8.636 2.698 8.325 2.464
Warlock 56.541 25.065 36.293 10.018 8.301 2.791 7.007 3.112
Paladin 62.312 23.934 36.918 10.712 9.281 2.734 6.847 2.386
Sorcerer 58.915 15.707 35.101 9.452 8.078 2.767 7.630 1.850
Cleric 37.772 16.451 37.402 11.990 10.545 3.322 3.613 1.303
Fighter 53.393 20.792 39.798 12.269 10.447 2.933 5.141 1.640
Rogue 61.789 28.006 28.485 9.300 7.602 2.927 8.078 2.629
Wizard 53.932 39.511 25.204 8.610 6.801 2.996 7.151 4.198

Table 6: Summary of class-specific data for Dungeon 2.

20

Class Damage
Dealt (Avg.)

Damage
Dealt (Std.

Dev.)

Damage
Taken (Avg.)

Damage
Taken (Std.

Dev.)

Rounds
Survived
(Avg.)

Rounds
Survived

(Std. Dev.)
DPR (Avg.) DPR (Std.

Dev.)

Barbarian 99.222 30.515 47.604 12.688 7.715 2.445 13.382 3.625
Bard 44.100 19.087 40.244 12.118 7.790 2.843 5.688 1.676
Druid 52.968 23.745 40.863 11.666 7.779 2.749 6.970 2.689
Monk 64.687 36.885 27.009 9.045 6.033 2.900 10.485 4.406
Ranger 70.289 30.925 40.383 11.405 7.813 2.813 8.954 2.514
Warlock 60.529 28.177 38.859 10.698 7.195 2.595 8.775 4.020
Paladin 63.253 26.523 39.836 10.753 8.183 2.756 7.900 2.772
Sorcerer 62.046 17.881 36.397 9.645 7.614 2.692 8.440 1.835
Cleric 55.831 25.198 40.253 12.299 9.267 3.278 6.029 1.832
Fighter 52.210 21.491 43.019 11.520 9.509 2.979 5.509 1.698
Rogue 58.216 30.286 31.277 9.813 6.712 2.913 8.488 2.830
Wizard 61.507 34.829 26.651 8.559 5.490 2.723 10.661 3.238

Table 7: Summary of class-specific data for Dungeon 3.

21

	Background and Description of Problem
	The d20 System
	Rolling Dice
	Advantage
	Stats and Modifiers
	Party Composition
	Class Descriptions
	Monsters

	Implementation
	Classes (the Programming Kind)
	Combat Encounters
	Dungeons and Rests
	Monte Carlo Simulation

	Main Findings
	Party Composition Analysis
	Damage per Round
	Individual Class Performance

	Conclusions
	Party Composition and Gameplay Balance
	Future Work

	Code
	Rolling dice in the form `ndk+m'
	Rolling a d20 with advantage

	Summary of Class-Specific Data

